МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Методические рекомендации по выполнению самостоятельной работы по дисциплине

Объектно-ориентированный анализ и программирование

для студентов направления 231000.62 «Программная инженерия»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра автоматизации обработки информации

Утверждаю):
Зав. каф. А	ОИ
профессор	
	_Ю.П. Ехлаков
« »	

Методические рекомендации по выполнению самостоятельной работы по лисциплине

Объектно-ориентированный анализ и программирование

для студентов направления 231000.62 «Программная инженерия»

Разработчик:
ст. преподаватель каф. АОИ
Н.В. Пермякова

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. ОБЩАЯ ХАРАКТЕРИСТИКА САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО	
ДИСЦИПЛИНЕ	5
2. СТРУКТУРА САМОСТОЯТЕЛЬНОЙ РАБОТЫ	5
3. МЕТОДИКА РЕАЛИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО	
ТЕОРЕТИЧЕСКОМУ КУРСУ	7
4. СОДЕРЖАНИЕ РАЗДЕЛОВ И ТЕМ ДИСЦИПЛИНЫ ДЛЯ	
САМОСТОЯТЕЛЬНОЙ РАБОТЫ	8
Раздел 2. Объектно-ориентированный анализ и проектирование с	
использованием UML.	9
Раздел 3. Диаграммы UML.	9
Раздел 4. Основы управления проектами	11
Раздел 5. Основные понятия объектно-ориентированного	
программирования	12
Раздел 6. Применение библиотек и иерархий объектов при	
программировании	13
ОЦЕНКА ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА	
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА	15

ВВЕДЕНИЕ

Дисциплина «Объектно-ориентированный анализ и программирование» относится к базовому циклу профессиональных дисциплин подготовки бакалавров направления 231000.62 «Программная инженерия».

Целью курса является сформировать у студентов объектноориентированное мышление, научить их объектно-ориентированному (ОО) подходу к анализу предметной области и использованию объектноориентированной методологии программирования при разработке программных продуктов.

Процесс самостоятельной работы студентов направлен на формирование следующих профессиональных (ПК) компетенций:

- 1) выпускник должен демонстрировать понимание основных концепций, принципов, теорий и фактов, связанных с информатикой (ПК-1).
- 2) выпускник должен уметь применять основы информатики и программирования к проектированию, конструированию и тестированию программных продуктов (ПК-10).
- 3) выпускник должен иметь навыки использования различных технологий разработки программного обеспечения (ПК-16).

Задачи изучения дисциплины следующие:

- изучение техники объектно-ориентированного анализа:
- изучение приемов объектно-ориентированного программирования;
- изучение технологии проектирования архитектуры информационных систем:
- изучение основ проектирования информационно-коммуникационных технологий (ИКТ) и основ управления ИКТ-проектами.

Данные методические указания предназначены для выполнения самостоятельной работы по дисциплине «Объектно-ориентированный анализ и программирование» подготовки бакалавров направления 231000.62 «Программная инженерия».

1. ОБЩАЯ ХАРАКТЕРИСТИКА САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ЛИСПИПЛИНЕ

Самостоятельная работа является важной составляющей в изучении дисциплины и состоит из следующих видов деятельности: проработка лекционного материала с целью подготовки к тестовым опросам и контрольным работам, самостоятельное изучение теоретического материала, подготовка к лабораторным работам, написание реферата и подготовка устного доклада с последующим выступлением на лекции.

Самостоятельная работа над теоретическим материалом направлена на изучение основных понятий и принципов объектно-ориентированного анализа и программирования, основ проектирования информационных систем, основ управления проектами.

Самостоятельная работа по подготовке к выполнению лабораторных работ направлена на изучение инструментальных сред объектноориентированного анализа и программирования. В ходе лабораторной работы студенты самостоятельно выполняют решение индивидуального или группового варианта, отлаживают написанные программы и защищают результаты работы.

На протяжении изучения дисциплины студент может выбрать тему, не вошедшую в лекционный курс и написать по выбранной теме реферат и (или) подготовить устный доклад для выступления на лекционных занятиях.

2. СТРУКТУРА САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Объем и виды самостоятельной работы в структуре дисциплины приведены в следующей таблице:

Тематика самостоятельной работы (детализация)	Трудоем- кость, час	Компетенции ОК, ПК	Контроль выпол- нения работы
Подготовка к лабораторной работе № 1	2	ПК – 1, ПК – 10, ПК - 16	Отчет, защита лабораторной работы
Проработка лекционного материала, подготовка к тестовым опросам:			
Подготовка к тестовому опросу по теме «Диаграмма состояний»	1	ПК – 1, ПК – 10, ПК - 16	Тестовый опрос
Подготовка к тестовому опросу по теме «Диаграмма компонентов»	1	ПК – 1, ПК – 10, ПК - 16	Тестовый опрос
Подготовка к тестовому опросу по теме «Диаграмма взаимодействия»	1	ПК – 1, ПК – 10, ПК - 16	Тестовый опрос

Самостоятельное изучение материала по теме «Диаграмма деятельности»	3	ПК – 1, ПК – 12, ПК - 16	Тестовый опрос
Подготовка к тестовому опросу по теме «Диаграмма взаимодействия	1	ПК – 1, ПК – 10, ПК - 16	Тестовый опрос
Подготовка к лабораторной работе № 2 «Создание диаграммы прецедентов в Rational Rose»	2	ПК – 1, ПК – 10, ПК - 16	Отчет, защита лаб. работы
Подготовка к лабораторной работе №3 «Создание диаграммы состояний в Rational Rose»	3	ПК – 1, ПК – 10, ПК - 16	Отчет, защита лаб. работы
Подготовка к лабораторной работе №4 «Создание диаграмм взаимодействия в Rational Rose»	3	ПК – 1, ПК – 10, ПК - 16	Отчет, защита лаб. работы
Подготовка к лабораторной работе №5 «Создание диаграммы классов в Rational Rose»	2	ПК – 1, ПК – 10, ПК - 16	Отчет, защита лаб. работы
Подготовка и написание реферата	1	ПК – 10, ПК - 16	Реферат
Подготовка устного доклада	1	ПК – 10, ПК - 16	Выступление на лекции
Самостоятельное изучение тем:			
Этап анализа проблемы	2	ПК – 10, ПК - 16	Контрольная ра- бота №1
Управление масштабом проекта.	3	ПК – 10, ПК - 16	Контрольная ра- бота №1
Требования к программному обеспечению	2	ПК – 10, ПК - 16	Контрольная ра- бота №1
Организация требований	2	ПК – 10, ПК - 16	Контрольная ра- бота №1
Подготовка к контрольной работе №1 «Управление требованиями к ИС»	1	ПК – 10, ПК - 16	Контрольная ра- бота №1
Подготовка и написание реферата	6	ПК – 10, ПК - 16	Реферат
Подготовка устного доклада	6	ПК – 10, ПК - 16	Выступление на лекции
Проработка лекционного материала, подготовка к кон-	6		

трольным работам:			
«Разработка простого класса»	1	ПК – 1, ПК – 10,	Контрольная ра- бота №2
		ПК - 16	00143122
«Разработка производного	1	ПК – 1,	Контрольная ра-
класса»		ПК – 10, ПК - 16	бота №3
«Отношения между класса-	1	ПК - 10 ПК – 1,	Контрольная ра-
ми»	1	ПК – 10,	бота №4
		ПК - 16	
Подготовка к лабораторной	1	ПК – 1,	Отчет, защита
работе «Работа с классом		ПК – 10,	лаб. работы
Vector» Подготовка к лабораторной	1	ПК - 16 ПК – 1,	Отчет, защита
работе «Создание класса гра-	1	ПК – 1, ПК – 10,	лаб. работы
фического изображения»		ПК - 16	
Подготовка к лабораторной	1	ПК – 1,	Отчет, защита
работе «Наследование и по-		ПК – 10,	лаб. работы
лиморфизм. Создание класса		ПК - 16	
наследника» Подготовка к лабораторной	1	ПК – 1,	Отчет, защита
работе «Перегрузка опера-	1	ПК – 10,	лаб. работы
ций»		ПК - 16	.
Подготовка к лабораторной	1	$\Pi K - 1$,	Отчет, защита
работе «Создание массива		$\Pi K - 10$,	лаб. работы
объектов. Однородные объек-		ПК - 16	
ты. Разнородные объекты» Подготовка к лабораторной	1	ПК – 1,	Отчет, защита
работе «Создание класса для	1	ПК – 1, ПК – 10,	лаб. работы
работы с файлами. Система		ПК - 16	
меню»			
Подготовка к лабораторной	2	$\Pi K - 1$,	Отчет, защита
работе «Разработка и созда-		ПК – 10, ПК - 16	лаб. работы
ние программной мини- системы»		11K - 16	
Подготовка к экзамену	36		Экзамен

3. МЕТОДИКА РЕАЛИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ТЕОРЕТИЧЕСКОМУ КУРСУ

При самостоятельном изучении элементов теоретического курса студенты могут придерживаться следующего плана:

- 1. Самостоятельно изучить темы теоретического курса в соответствии с учебной программой дисциплины:
 - Диаграмма деятельности в UML;
 - Этап анализа проблемы;

- Управление масштабом проекта;
- Требования к программному обеспечению;
- Организация требований.
- 2. Проработать лекционный материал с целью подготовки к следующим тестовым опросам:
 - Диаграмма состояний;
 - Диаграмма компонентов;
 - Диаграмма взаимодействия;
 - Диаграмма деятельности.

и контрольным работам:

- Управление требованиями к ИС;
- Разработка простого класса;
- Разработка производного класса;
- Отношения между классами.
- 3. Самостоятельно изучить одну из указанных ниже тем, оформить результаты изучения рефератом и (или) подготовить устный доклад:
 - Интеграция пакетов Rational RequisitePro и Microsoft Project. Составление графика реализации проекта;
 - Объектно-ориентированное проектирование Web-приложений с использованием языка унифицированного моделирования;
 - Расширение языка UML для проектирования систем реального времени;
 - Проектирование структуры баз данных с использованием компонента Data Modeler:
 - Изучение пакета Rational Test:
 - Изучение систем поддержки групповой работы на этапах проектирования и управления требованиями;
 - Управление конфигурацией программных систем с использованием Rational ClearCase;
 - Моделирование организационных систем с использованием UML:
 - Адаптация Rational Unified Process к нуждам конкретной организации. Использование компонента RUP Builder.
- 4. Подготовить устные ответы на контрольные вопросы, приведенные после каждой темы.

Самостоятельную работу выполняют студенты на основе учебнометодических материалов дисциплины и литературы, указанной в списке литературы данного методического пособия.

Самостоятельно изучаемые вопросы курса включены в экзаменационные билеты.

Варианты тестовых опросов и контрольных работ преподаватель выдает на лекционных занятиях в соответствии с графиком проведения.

4. СОДЕРЖАНИЕ РАЗДЕЛОВ И ТЕМ ДИСЦИПЛИНЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Раздел 2. Объектно-ориентированный анализ и проектирование с использованием UML.

Трудоемкость лекционного курса – 2 часа.

Трудоемкость лабораторных работ – 2 часа.

Самостоятельная работа – 2 часа.

Язык UML. Основные средства анализа и моделирования предметной области в языке UML. предпосылки возникновения и история создания UML; принципы моделирования с использованием UML; результат моделирования, понятие архитектуры системы.

Контрольные вопросы:

- 1. Определите понятие «сложность задачи». Приведите примеры сложных систем.
- 2. Охарактеризуйте основные задачи объектно-ориентированной декомпозиции системы.
 - 3. Перечислите основные этапы создания программного продукта.
- 4. Дайте определение атрибутов, их типов и представления при объектном моделировании.
 - 5. Дайте определение связей, их видов и способы формализации.
- 6. Как используется язык UML для объектно-ориентированного анализа?
 - 7. Перечислите Рабочие продукты ОО анализа.

Раздел 3. Диаграммы UML.

Трудоемкость лекционного курса – 5 часов.

Трудоемкость лабораторных работ – 16 часов.

Самостоятельная работа – 19 часов.

Диаграмма прецедентов. Назначение диаграммы прецедентов; понятие прецедента и актера; абстрактные актеры и прецеденты; примечания; отношения ассоциации, расширения, включения, обобщения; различия между отношениями включения и расширения; установка границ системы; прецеденты и функции; пропорции прецедентов и актеров на диаграмме; потоки событий; идеальные и реальные прецеденты; рекомендации по разработке диаграмм прецедентов.

Диаграммы состояний и деятельности. Общие сведения о диаграмме состояний; понятие автомата; состояние; метки действия, переход; событие, выражение действия, составные состояния и вложенные состояния; параллельные состояния; рекомендации по разработке диаграммы состояний. Идентификация, описание объектов и их поведения.

Общие сведения о диаграмме деятельности;

Диаграмма классов. Назначение диаграммы; понятие класса; классы и объекты; атрибуты класса; методы класса; абстрактные классы; основные виды отношений - отношения зависимости, ассоциации, обобщения, агрегации,

композиции; отношение зависимости между пакетами; рекомендации по построению диаграммы классов.

Диаграммы взаимодействий. Назначение диаграммы последовательности; объекты; линия жизни объекта; ветвление потока управления; стереотипы сообщений; временные ограничения; рекомендации по построению диаграмм.

Назначение диаграммы кооперации; понятие кооперации; активные объекты; составные объекты; связи; сообщения; рекомендации по построению. Объектный подход к разработке ПО для распределенных систем.

Диаграммы компонентов и развертывания. Назначение диаграммы компонентов; понятие компонента; виды компонентов; интерфейсы; зависимости; рекомендации по построению диаграммы компонентов. Назначение диаграммы развертывания; понятие узла; соединения; рекомендации по построению диаграммы.

Самостоятельно изучите тему «Диаграмма деятельности». При изучении обратите внимание на следующие ключевые моменты темы:

Состояние действия и состояние деятельности; переход, ветвление, разделение и слияние; параллельные потоки работ; дорожки, объекты; рекомендации по построению диаграмм деятельности.

- 1. Что определяет диаграмма прецедентов?
- 2. Дайте определение прецедента.
- 3. Дайте определение актера.
- 4. Перечислите основные типы отношений.
- 5. Дайте определение потока событий.
- 6. Что определяет диаграмма состояния?
- 7. Для чего используется диаграмма деятельности.
- 8. Дайте определение понятия «автомат».
- 9. Охарактеризуйте составные, вложенные и параллельные состояния.
- 10. Дайте определение объекта.
- 11. Что понимается под «поведением объекта»?
- 12. Дайте определение класса.
- 13. Перечислите типы атрибутов класса.
- 14. Для чего используются абстрактные классы?
- 15. Для чего используется диаграмма последовательности?
- 16. Что такое «линия жизни объекта».
- 17. Приведите примеры ветвления потока управления.
- 18. Определите понятие кооперации.
- 19. Приведите пример активных объектов.
- 20. Приведите пример составных объектов.
- 21. Определите понятие компонента.
- 22. Перечислите виды компонентов.
- 23. Определите понятия узла и соединения.

Раздел 4. Основы управления проектами

Трудоемкость лекционного курса – 1 часа. Лабораторные работы по разделу не предусмотрены. Самостоятельная работа – 22 часа.

Понятие требований; процесс управлениями требованиями; пирамида типов требований: запросы заинтересованных сторон, требования к программному обеспечению. Область проблемы и область решения. Экономическое обоснование необходимости формальных методов управления требованиями к ИС.

При *самостоятельном* изучении тем обратите внимание на следующие ключевые моменты:

1. Этап анализа проблемы -

Достижение соглашения об определении проблемы.

Выделение основных причин.

Выявление заинтересованных лиц и пользователей.

Определение границ системы-решения.

Выявление ограничений, налагаемых на решение.

2. Управление масштабом проекта -

Введение в проблему масштаба проекта.

Составляющие масштаба проекта.

Базовый уровень требований.

Установка приоритетов.

Оценка трудозатрат.

Добавление элемента риска.

Сокращение масштаба.

Функции системы и их атрибуты.

3. Требования к программному обеспечению –

Функциональные требования, функциональные и нефункциональные требования к программному обеспечению.

Требования практичности. Требования надежности.

Требования производительности.

Возможность обслуживания.

Ограничения проектирования.

4. Организация требований -

Использование "дочерних" требований для повышения уровня конкретизации.

Организация дочерних требований.

Пакет Modern SRS Package.

Документ видения. Понятие трассировки и верификации.

Качество требований и методы его проверки.

- 1. Дайте определение понятия «требование».
- 2. Перечислите основные уровни требований.
- 3. Перечислите свойства требований к ИС.
- 4. Что понимается под процессом управления требованиями?
- 5. Что включает в себя процесс анализа проблемы?
- 6. Назовите способы визуализации процесса выделения основных причин.
- 7. Какими методами можно определить количественный вклад выделенных проблем в основную проблему?
- 8. Перечислите основные типы заинтересованных лиц.
- 9. Какие вопросы могут задаваться заинтересованным лицам на этапе анализа проблемы?
- 10. Дайте понятие актера системы.
- 11. Перечислите типы источников ограничений.
- 12. Перечислите виды требований к программному обеспечению по уровням.
- Перечислите виды требований к программному обеспечению по характеру.
- 14. Каковы источники требований к программному обеспечению (ПО)?
- 15. Перечислите методологии разработки требований к ПО.
- 16. Дайте определение трассировки.
- 17. Дайте определение верификации.
- 18. Каким образом можно проверить качество требований?

Раздел 5. Основные понятия объектно-ориентированного программирования

Трудоемкость лекционного курса — 5 часов Трудоемкость лабораторных работ — 10 часов Самостоятельная работа — 8 часов.

Объектно-ориентированная методология программирования. Объектно-ориентированные языки. Понятия объекта, класса, метода, сообщения. Отношения простого и множественного наследования, виртуальные базовые классы. Абстракция данных, наследование и полиморфизм. Абстрактные классы. Полиморфизм параметрический и динамический. Совместимость типов в объектно-ориентированном программировании. Перекрытие методов. Методы реализации различных конструкций объектно-ориентированного программирования.

- 1. Зачем нужны конструкторы и деструкторы классов?
- 2. Какие виды отношений существуют между классами?
- 3. Что представляют собой атрибуты и методы класса?

- 4. Каким образом можно управлять видимостью элементов класса?
- 5. Какие методы класса являются встроенными (inline)?
- 6. Какие спецификаторы доступа используются в С++?
- 7. Какие типы конструкторов существуют?
- 8. В каких случаях вызываются конструкторы копирования?
- 9. Какие конструкторы используются по умолчанию?
- 10. Для чего нужен деструктор? в каком случае вызывается деструктор?
- 11. На что указывает указатель this?
- 12. Какие операции нельзя перегружать?
- 13. Какой оператор используется при перегрузке операций?
- 14. Какие способы существуют для перегрузки операций?
- Чем отличается перегрузка компонентной и глобальной унарной операпии?
- 16. Что обозначает спецификатор friend?
- 17. Что представляет собой отношение наследования?
- 18. Что представляет собой открытое наследование? Привести пример.
- 19. Что такое принцип подстановки. Привести пример.
- 20. Что представляет собой закрытое наследование? Привести пример.
- 21. Что такое связывание?
- 22. Что такое полиморфные функции?
- 23. Чем полиморфизм отличается от принципа подстановки?
- 24. В каких случаях используется механизм позднего связывания?
- 25. Что такое чисто виртуальная функция?
- 26. Какие методы рекомендуется делать виртуальными?
- 27. Что такое таблица виртуальных методов? Для чего она используется?
- 28. Каким образом выполняется выбор виртуальной функции при позднем связывании?
- 29. Почему деструкторы рекомендуется делать виртуальными?
- 30. Какие методы нужно делать виртуальными?

Раздел 6. Применение библиотек и иерархий объектов при программировании

Трудоемкость лекционного курса — 4 часа Трудоемкость лабораторных работ — 8 часов Самостоятельная работа — 3 часа.

Потоки. Установка потока. Чтение и запись потока. Вывод в поток. Ввод из потока. Удаление потока. Использование объектов с потоком. Механизм потоков. Процедуры обмена информации в потоках. Шаблоны. Библиотека стандартных шаблонов. Основные концепции STL. Последовательные и ассоциативные контейнеры. Итераторы STL. Общие свойства контейнеров. Использование последовательных контейнеров. Адаптеры контейнеров. Алгоритмы. Инструментальные средства объектно-ориентированного программирования.

- 1. Абстрактные типы данных. Контейнеры.
- 2. Примеры реализации (вектор, матрица, стек, очередь)
- 3. Создание шаблонов классов
- 4. Использование шаблонов классов
- 5. Специализация шаблонов.
- 6. Классификация потоков.
- 7. Подключение потоков
- 8. Операции ввода-вывода
- 9. Файловые потоки
- 10. Контейнеры
- 11. Итераторы
- 12. Последовательные контейнеры
- 13. Адаптеры контейнеров
- 14. Ассоциативные контейнеры
- 15. Обобщенные алгоритмы

ОЦЕНКА ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА

Самостоятельная работа студента оценивается преподавателем по результатам выполнения:

- тестовых опросов;
- контрольных работ;
- защиты лабораторных работ;
- устного доклада;
- реферата;
- ответов на экзамене.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Павловская Т. А. С/С++. Программирование на языке высокого уровня: Учебник для вузов / Т. А. Павловская. СПб.: Питер, 2007.- 460 с
- 2. Крачтен Филипп. Введение в Rational Unified Process. 2-е изд.. : Пер. с англ. М: Издательский дом "Вильямс", 2002. 240 с. : ил.
- 3. Леоненков А. В. Самоучитель UML. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2006. 432 с.
- 4. Буч Грейди, Рамбо Джеймс, Джекобсон Айвар. Язык UML. Руководство пользователя: Пер. с англ. М.: ДМК,2000. 432c.
- 5. Розенберг Дуг, Кендалл Скот. Применение объектного моделирования с использованием UML и анализ прецедентов. Пер. с англ. М.: "ДМК-Пресс", 2002. 160 с.
- 6. Ларман Крэг. Применение UML и шаблонов проектирования. Введение в объектно-ориентированный анализ и проектирование. Пер. с англ.: Уч. Пос. М: Издательский дом "Вильямс", 2001. 496 с.
- 7. Боггс Уэнди, Боггс Майкл. UML и Rational Rose. Пер. с англ. М: Издательство "Лори", 2000. 582 с.: ил.
- 8. Леффингуэл Дин, Уидриг Дон. Принципы работы с требованиями к программному обеспечению. Унифицированный подход. Пер. с англ. М: Издательский дом "Вильямс", 2002. 448 с.
- 9. Брайен А. Уайт. Управление конфигурацией программных средств. Практическое руководство по Rational ClearCase. Пер. с англ. М.: "ДМК-Пресс", 2002. 272 с.
- 10. Коналлен Джим. Разработка Web-приложений с использованием UML. Пер. с англ. М.: Издательский дом "Вильямс", 2001. 288 с.