МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра автоматизации обработки информации

УТВЕРЖ,	ДАЮ:
Зав. каф. А	АОИ, профессор
	— Ю.П. Ехлаков
«»	2012 г

Методические указания для выполнения самостоятельной работы по дисциплине

Теория вероятностей и математическая статистика

для студентов направления 080500.62 «Бизнес-информатика»

Разработчик:
Математик каф. АОИ
Л.И. Синчинова

Самостоятельная работа по дисциплине «Теория вероятностей и математическая статистика» имеет целью обучение студентов навыкам работы с литературой и применению методов, рассмотренных в процессе изучения дисциплины, к решению практических задач.

Самостоятельная работа студента направлена на формирование следующих компетенций:

- владеть культурой мышления, быть способным к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения (ОК-1);
- способность анализировать социально значимые проблемы и процессы, происходящие в обществе, и прогнозировать возможное их развитие в будущем **(ОК-4)**;
- проводить исследование и анализ рынка ИС и ИКТ (ПК-2);
- использовать основные методы естественнонаучных дисциплин в профессиональной деятельности для теоретического и экспериментального исследования (ПК-19);
- использовать соответствующий математический аппарат и инструментальные средства для обработки, анализа и систематизации информации по теме исследования (ПК-20).

Самостоятельная работа студента содержит следующие формы образовательной деятельности.

Проработка лекционного материала – целью этой выработка умения является деятельности выделить прочитанном тексте, провести главное информации, выстроить полученной взаимосвязи изучаемых понятий и разделов дисциплины. Студенту предоставляется вопросов список подготовки ДЛЯ теоретического материала. Проверка качества этой работы проводится с помощью тестовых и фронтальных опросов, проверки конспектов и отчетов.

Самостоятельное изучение материала, подготовка докладов, презентаций — эта часть работы дает возможность студенту участвовать в построении траектории своего обучения. В качестве предмета презентации студентам предлагаются частные модели теории вероятностей или интересные задачи прикладного характера. Важным элементом в этом случае является не столько само изучение, сколько публичность представления результатов работы и коллегиальная форма ее оценки.

СОДЕРЖАНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Номера раздела	Тематика	Тру-до-	Компе-	Контроль
дисциплины	самостоятельной работы	ем-	тенции	выпол-
	(детализация)	кость,	ОК, ПК	нения
		час		работы
1. Введение	Тема 1	2	OK-1, OK-4,	Доклады на
	Теория вероятностей и		ПК-2, ПК-19	лекции
	жизнь		ПК-20	
2. Случайные	Тема 2	8	OK-1, OK-4,	
события	Вычисление групповых		ПК-2, ПК-19	опрос на
	вероятностей		ПК-20	лекции
3. Случайные	Тема 3	12	OK-1, OK-4,	
величины	Распределение «хи-		ПК-2, ПК-19	лекции
	квадрат» и распределение		ПК-20	
	Фишера			
4. Системы	Тема 4	8	OK-1, OK-4,	Тестовый
случайных	Законы распределения		ПК-2, ПК-19	опрос на
величин	систем случайных		ПК-20	лекции
	величин			
5. Предельные	Тема 5	8	OK-1, OK-4,	
теоремы	Закон больших чисел		ПК-2, ПК-19	лекции
теории			ПК-20	
вероятностей				
6. Основы	Тема 6	16	OK-1, OK-4,	
математичес-	Числовые		ПК-2, ПК-19	опрос на
кой статистики	характеристики выборки		ПК-20	лекции

7.	Тема 7	18	ОК-1, ОК-4, Д	Цоклады на
Исследование	Множественная		ПК-2, ПК-19	лекции
зависимостей	линейная регрессия		ПК-20	

Тема 1. Теория вероятностей и жизнь

Данная тема рассматривается в рамках раздела «Введение». Студентам предлагается отыскать предпосылки возникновения науки, а также различные аспекты применения теории вероятностей в жизни. Контроль – доклады на лекции.

Тема 2. Вычисление групповых вероятностей.

Во время аудиторных занятий рассматриваются методы вычисления вероятностей суммы и произведения двух или трех событий. В качестве самостоятельной работы студентам предлагается рассмотреть способы вычисления вероятности суммы и произведения четырех и более событий. Контроль – тестовый опрос на лекции.

Тема 3. Распределение «хи-квадрат» и распределение Фишера.

Студентам предлагается самостоятельно рассмотреть данные виды распределения случайной величины, научиться определять критические точки для этих способов распределения. Контроль – доклады на лекции.

Тема 4. Законы распределения случайной величины.

В данном разделе самостоятельной работы предлагается закрепить навыки задания дискретной и непрерывной случайной величины и определения их числовых характеристик. Контроль — тестовый опрос на лекции

Тема 5. Закон больших чисел.

Основной формой работы по данной теме является проработка лекционного материала, так как теоремы, составляющие закон больших чисел, представляют собой материал достаточно трудный для усвоения и осмысления. Контроль – доклады на лекции.

Тема 6. Числовые характеристики выборки.

Предполагаются дополнительные индивидуальные задания для закрепления материала, рассмотренного во время аудиторных занятий. Контроль – тестовый опрос на лекции.

Тема 7. Множественная линейная регрессия.

Требуется рассмотреть множественные линейные и полиномиальные регрессионные модели, их суть и способы применения для решения задач. Контроль — доклады на лекции.

3. РЕКОМЕНДУЕМЫЕ ИСТОЧНИКИ

3.1 Основная литература

- 1. <u>Вентцель</u> Е.С., Овчаров Л.А. Теория вероятностей и ее инженерные приложения: Учебное пособие для вузов.- М.: Академия, 2003. 458 с.
- 2. <u>Вентцель</u> Е.С., Овчаров Л.А.Задачи и упражнения по теории вероятностей: Учебное пособие для втузов. М.: Академия, 2005. 439 с.
- 3. Гмурман В.Е. Теория вероятностей и математическая статистика. М: Высшая школа, 2008

3.2 Дополнительная литература

- 1. Кремер Н.Ш. Теория вероятностей и математическая статистика.- М:ЮНИТИ-ДАНА, 2002
- 2. Тюрин Ю.Н., Макаров А.А. Анализ данных на компьютере.-М; Финансы и статистика, 2001
- 3. Письменный Д.Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам. М.: Айрис-Пресс, 2006. 287c
- 4. Палий И.А. Задачник по теории вероятностей: Учебное пособие для вузов / ред.: А. М. Завьялов; Мин.обр. и науки РФ, Сибирская государственная автомобильно-дорожная академия. М.: Наука, 2005. 237с

3.3 Электронные источники информации

Научно-образовательный портал университета (http://edu.tusur.ru), электронный каталог библиотеки ТУСУР (http://elib.tusur.ru); ЭБС «Лань» (http://e.lanbook.com); электронные информационносправочные ресурсы вычислительных залов кафедры АОИ

Приложение 1

Список вопросов для подготовки

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

- 1. СЛУЧАЙНЫЕ СОБЫТИЯ
- 1. Неопределяемые понятия теории вероятностей
- 2. Пространство элементарных событий. Понятие события
- 3. Сумма событий. Произведение событий. Противоположное событие
- 4. События несовместные, невозможное, достоверное
- 5. Алгебра событий. Аксиомы алгебры событий
- 6. Вероятность. Аксиомы вероятности
- 7. Вероятностное пространство
- 8. Классическое вероятностное пространство
- 9. Геометрическое вероятностное пространство
- 10. Свойства вероятностей
- 11. Условная вероятность
- 12. Независимость пары событий (определение и критерий)
- 13. Независимость событий в совокупности
- 14. Полная группа несовместных событий
- 15. Теорема о полной вероятности
- 16. Теорема Байеса
- 17. Повторные независимые испытания
- 18. Схема испытаний Бернулли
- 19. Полиномиальная схема испытаний
- 20. Динамическая схема испытаний

2. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

- 1. Понятие случайной величины
- 2. Дискретная случайная величина. Таблица распределения
- 3. Различные формы закона распределения ДСВ
- 4. Непрерывная случайная величина. Плотность распределения
- 5. Функция распределения случайной величины и ее свойства

- 6. Преобразование случайной величины (функция от случайной величины)
- 7. Теоремы о плотности и функции распределения линейного преобразования
- 8. Теорема о плотности распределения произвольного преобразовании
- 9. Начальные моменты случайной величины
- 10. Центральные моменты случайной величины
- 11. Математическое ожидание и его свойства (доказательство)
- 12. Дисперсия и ее свойства (доказательство)
- 13. Производящая функция дискретной случайной величины. Нахождение начальных моментов ДСВ с помощью производящей функции.
- 14. Мода. Квантили. Характеристики косости и крутости
- 15. Распределение Бернулли (одноточечное)
- 16. Биномиальное распределение
- 17. Геометрическое распределение
- 18. Распределение Пуассона
- 19. Сходимость биномиального распределения к распределению Пуассона.
- 20. Равномерное распределение
- 21. Экспоненциальное распределение
- 22. Нормальное распределение
- 23. Функция Лапласа и ее свойства
- 24. Вычисление вероятностей для нормального распределения с помощью функции Лапласа

3. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН

- 1. Дискретная двумерная случайная величина. Матрица распределения, ее свойства
- 2. Распределения компонент двумерной дискретной случайной величины (условные и безусловные)
- 3. Критерий независимости компонент двумерной дискретной случайной величины
- 4. Непрерывная двумерная случайная величина. Плотность распределения и ее свойства

- 5. Функция распределения и ее свойства
- 6. Распределения компонент двумерной непрерывной случайной величины (условные и безусловные)
- 7. Критерий независимости компонент двумерной непрерывной случайной величины
- 8. Числовые характеристики системы случайных величин
- 9. Ковариация. Вывод вычислительной формулы
- 10. Независимость и некоррелированность системы случайных величин (определение и теорема)
- 11. Свойства математического ожидания. Доказательство теоремы о математическом ожидании суммы случайных величин
- 12. Свойства дисперсии. Доказательство теоремы о дисперсии суммы (разности) случайных величин
- 13. Свойства коэффициента корреляции. Доказательство теоремы о величине коэффициента корреляции
- 14. Свойства коэффициента корреляции. Доказательство теоремы о функциональной линейной связи.
- 15. Функция регрессии, ее свойства (основное свойство с доказательством).

4. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

- 1. Сходимость последовательности случайных величин по вероятности
- 2. Сходимость последовательности случайных величин по распределению
- 3. Понятие асимптотически нормальной СВ. Центральная предельная теорема
- 4. Предельные теоремы Муавра-Лапласа как следствия центральной предельной теоремы. Условия применения.
- 5. Неравенство Чебышева. Доказательство для дискретной случайной величины
- 6. Неравенство Чебышева. Доказательство для непрерывной случайной величины
- 7. Закон больших чисел (теорема Чебышева)
- 8. Закон больших чисел (теорема Бернулли)

9. Закон больших чисел (теорема Пуассона).

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

- 1. ОЦЕНКИ И МЕТОДЫ ОЦЕНИВАНИЯ
- 1. Генеральная совокупность и выборка
- 2. Параметр и оценка
- 3. Выборочный метод. Способы отбора
- 4. Выборочные функции. Статистические копии
- 5. Распределении, используемые в математической статистике (стандартное нормальное, Стьюдента, «хиквадрат», Фишера)
- 6. Способы представления выборки
- 7. Оценка плотности и функции распределения
- 8. Понятие точечной оценки параметра
- 9. Несмещенность. Теорема о начальных моментах
- 10. Состоятельность. Признак состоятельности для несмещенных оценок. Теорема о начальных моментах
- 11. Сравнение оценок по эффективности. Неравенство Рао-Крамера
- 12. Метод моментов. Свойства оценок
- 13. Метод максимального правдоподобия. Свойства оценок
- 14. Понятие интервальной оценки. Точность и надежность оценки. Влияние метода отбора на точность оценки. Роль доверительной вероятности
- 15. Схема построения доверительного интервала

2. СТАТИСТИЧЕСКАЯ ПРОВЕРКА ГИПОТЕЗ

- 1. Постановка задачи. Параметрические и непараметрические гипотезы. Основная и альтернативная гипотезы
- 2. Ошибки первого и второго рода. Форма критической области. Мощность критерия
- 3. Схема проверки параметрических гипотез
- 4. Проверка простых гипотез о числовых характеристиках нормальной генеральной совокупности
- 5. Сравнение параметров нормальной генеральной совокупности

- 6. Гипотезы о генеральной доле
- 7. Критерии согласия. Критерий Пирсона
- 8. Критерии согласия. Критерий Колмогорова
- 9. Критерии однородности. Критерий Колмогорова-Смирнова
- 10. Критерии однородности. Критерий знаков
- 11. Критерии однородности. Критерий Вилкоксона
- 12. Метод последовательного анализа при проверке параметрических гипотез.

СЛУЧАЙНЫЕ ПРОЦЕССЫ

- 1. Случайные процессы общего вида. Сечение случайного процесса, реализация случайного процесса
- 2. Законы распределения случайного процесса
- 3. Основные характеристики случайного процесса и их свойства (математическое ожидание, дисперсия, корреляционная функция, нормированная корреляционная функция)
- 4. Стационарные (в узком и в широком смысле) случайные процессы
- 5. Свойства характеристик стационарного случайного процесса
- 6. Эргодические случайные процессы, достаточные условия эргодичности

Приложение 2 Пример оформления титульного листа

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра автоматизации обработки информации (АОИ)

ВЕРОЯТНОСТНЫЕ ПРОСТРАНСТВА

Отчет об индивидуальном задании № 1 по дисциплине «Теория вероятностей, математическая статистика и случайные процессы»

Выполнил:	
Студент гр. 4	21-2
A	А.С. Багреев
« »	2012 г.
Проверил:	
Ст.преподава	тель каф. АОИ,
	_ 3.А.Смыслова
«»	2012 г.

2012